Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Biol Rep ; 49(4): 2847-2856, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1661716

ABSTRACT

BACKGROUND: Recombinase (uvsY and uvsX) from bacteriophage T4 is a key enzyme for recombinase polymerase amplification (RPA) that amplifies a target DNA sequence at a constant temperature with a single-stranded DNA-binding protein and a strand-displacing polymerase. The present study was conducted to examine the effects of the N- and C-terminal tags of uvsY on its function in RPA to detect SARS-CoV-2 DNA. METHODS: Untagged uvsY (uvsY-Δhis), N-terminal tagged uvsY (uvsY-Nhis), C-terminal tagged uvsY (uvsY-Chis), and N- and C-terminal tagged uvsY (uvsY-NChis) were expressed in Escherichia coli and purified. RPA reaction was carried out with the in vitro synthesized standard DNA at 41 °C. The amplified products were separated on agarose gels. RESULTS: The minimal initial copy numbers of standard DNA from which the amplified products were observed were 6 × 105, 60, 600, and 600 copies for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The minimal reaction time at which the amplified products were observed were 20, 20, 30, and 20 min for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The RPA with uvsY-Nhis exhibited clearer bands than that with either of other three uvsYs. CONCLUSIONS: The reaction efficiency of RPA with uvsY-Nhis was the highest, suggesting that uvsY-Nhis is suitable for use in RPA.


Subject(s)
Bacteriophage T4/enzymology , DNA, Viral/chemistry , DNA-Binding Proteins/chemistry , Membrane Proteins/chemistry , Nucleic Acid Amplification Techniques , SARS-CoV-2/chemistry , Viral Proteins/chemistry , DNA, Viral/genetics , SARS-CoV-2/genetics
2.
Sci Rep ; 11(1): 15997, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1345579

ABSTRACT

Simple tests of infectiousness that return results in minutes and directly from samples even with low viral loads could be a potential game-changer in the fight against COVID-19. Here, we describe an improved isothermal nucleic acid amplification assay, termed the RICCA (RNA Isothermal Co-assisted and Coupled Amplification) reaction, that consists of a simple one-pot format of 'sample-in and result-out' with a primary focus on the detection of low copy numbers of RNA virus directly from saliva without the need for laboratory processing. We demonstrate our assay by detecting 16S rRNA directly from E. coli cells with a sensitivity as low as 8 CFU/µL and RNA fragments from a synthetic template of SARS-CoV-2 with a sensitivity as low as 1740 copies/µL. We further demonstrate the applicability of our assay for real-time testing at the point of care by designing a closed format for paper-based lateral flow assay and detecting heat-inactivated SARS-COV-2 virus in human saliva at concentrations ranging from 28,000 to 2.8 copies/µL with a total assay time of 15-30 min.


Subject(s)
COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , RNA Viruses/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Equipment Design , Humans , Limit of Detection , Nucleic Acid Amplification Techniques/instrumentation , RNA Viruses/isolation & purification , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Saliva/virology
3.
Biochem Biophys Res Commun ; 567: 195-200, 2021 08 27.
Article in English | MEDLINE | ID: covidwho-1263226

ABSTRACT

Recombinase polymerase amplification (RPA) is an isothermal reaction that amplifies a target DNA sequence with a recombinase, a single-stranded DNA-binding protein (SSB), and a strand-displacing DNA polymerase. In this study, we optimized the reaction conditions of RPA to detect SARS-CoV-2 DNA and RNA using a statistical method to enhance the sensitivity. In vitro synthesized SARS-CoV-2 DNA and RNA were used as targets. After evaluating the concentration of each component, the uvsY, gp32, and ATP concentrations appeared to be rate-determining factors. In particular, the balance between the binding and dissociation of uvsX and DNA primer was precisely adjusted. Under the optimized condition, 60 copies of the target DNA were specifically detected. Detection of 60 copies of RNA was also achieved. Our results prove the fabrication flexibility of RPA reagents, leading to an expansion of the use of RPA in various fields.


Subject(s)
DNA, Viral/analysis , DNA-Directed DNA Polymerase/metabolism , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/standards , RNA, Viral/analysis , Recombinases/metabolism , SARS-CoV-2/genetics , Statistics as Topic , DNA Primers/metabolism , DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , SARS-CoV-2/isolation & purification , Viral Proteins/metabolism
4.
PLoS One ; 16(6): e0252789, 2021.
Article in English | MEDLINE | ID: covidwho-1259247

ABSTRACT

The general methods to detect the RNA of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in clinical diagnostic testing involve reverse transcriptases and thermostable DNA polymerases. In this study, we compared the detection of SARS-CoV-2 by a one-step real-time RT-PCR method using a heat-resistant reverse transcriptase variant MM4 from Moloney murine leukemia virus, two thermostable DNA polymerase variants with reverse transcriptase activity from Thermotoga petrophila K4 and Thermococcus kodakarensis KOD1, or a wild-type DNA polymerase from Thermus thermophilus M1. The highest performance was achieved by combining MM4 with the thermostable DNA polymerase from T. thermophilus M1. These enzymes efficiently amplified specific RNA using uracil-DNA glycosylase (UNG) to remove contamination and human RNase P RNA amplification as an internal control. The standard curve was obtained from 5 to 105 copies of synthetic RNA. The one-step real-time RT-PCR method's sensitivity and specificity were 99.44% and 100%, respectively (n = 213), compared to those of a commercially available diagnostic kit. Therefore, our method will be useful for the accurate detection and quantification of SARS-CoV-2.


Subject(s)
COVID-19 , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL